Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence

Identifieur interne : 006291 ( Main/Exploration ); précédent : 006290; suivant : 006292

Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence

Auteurs : D. M. Coward [Australie] ; B. Gendre [Italie] ; P. J. Sutton ; E. J. Howell [Australie] ; T. Regimbau [France] ; M. Laas-Bourez [Australie] ; A. Klotz [France] ; M. Boër [France] ; M. Branchesi [Italie]

Source :

RBID : ISTEX:8239953A7FB0D83CF71675A18933DD17C7E6E906

English descriptors

Abstract

Observations of an optical source coincident with gravitational wave emission detected from a binary neutron star coalescence will improve the confidence of detection, provide host galaxy localization and test models for the progenitors of short gamma‐ray bursts. We employ optical observations of three short gamma‐ray bursts, 050724, 050709 and 051221, to estimate the detection rate of a coordinated optical and gravitational wave search of neutron star mergers. Model R‐band optical afterglow light curves of these bursts that include a jet‐break are extrapolated for these sources at the sensitivity horizon of an Advanced LIGO/Virgo network. Using optical sensitivity limits of three telescopes, namely TAROT (m = 18), Zadko (m = 21) and an 8–10 m class telescope (m = 26), we approximate detection rates and cadence times for imaging. We find a median coincident detection rate of 4 yr−1 for the three bursts. GRB 050724 like bursts, with wide opening jet angles, offer the most optimistic rate of 13 coincident detections per year, and would be detectable by Zadko up to 5 d after the trigger. Late‐time imaging to m = 26 could detect off‐axis afterglows for GRB 051221 like bursts several months after the trigger. For a broad distribution of beaming angles, the optimal strategy for identifying the optical emissions triggered by gravitational wave detectors is rapid response searches with robotic telescopes followed by deeper imaging at later times if an afterglow is not detected within several days of the trigger.

Url:
DOI: 10.1111/j.1745-3933.2011.01072.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence</title>
<author>
<name sortKey="Coward, D M" sort="Coward, D M" uniqKey="Coward D" first="D. M." last="Coward">D. M. Coward</name>
</author>
<author>
<name sortKey="Gendre, B" sort="Gendre, B" uniqKey="Gendre B" first="B." last="Gendre">B. Gendre</name>
</author>
<author>
<name sortKey="Sutton, P J" sort="Sutton, P J" uniqKey="Sutton P" first="P. J." last="Sutton">P. J. Sutton</name>
</author>
<author>
<name sortKey="Howell, E J" sort="Howell, E J" uniqKey="Howell E" first="E. J." last="Howell">E. J. Howell</name>
</author>
<author>
<name sortKey="Regimbau, T" sort="Regimbau, T" uniqKey="Regimbau T" first="T." last="Regimbau">T. Regimbau</name>
</author>
<author>
<name sortKey="Laas Ourez, M" sort="Laas Ourez, M" uniqKey="Laas Ourez M" first="M." last="Laas-Bourez">M. Laas-Bourez</name>
</author>
<author>
<name sortKey="Klotz, A" sort="Klotz, A" uniqKey="Klotz A" first="A." last="Klotz">A. Klotz</name>
</author>
<author>
<name sortKey="Boer, M" sort="Boer, M" uniqKey="Boer M" first="M." last="Boër">M. Boër</name>
</author>
<author>
<name sortKey="Branchesi, M" sort="Branchesi, M" uniqKey="Branchesi M" first="M." last="Branchesi">M. Branchesi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8239953A7FB0D83CF71675A18933DD17C7E6E906</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1745-3933.2011.01072.x</idno>
<idno type="url">https://api.istex.fr/document/8239953A7FB0D83CF71675A18933DD17C7E6E906/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001861</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001861</idno>
<idno type="wicri:Area/Istex/Curation">001861</idno>
<idno type="wicri:Area/Istex/Checkpoint">000710</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000710</idno>
<idno type="wicri:doubleKey">1745-3925:2011:Coward D:towards:an:optimal</idno>
<idno type="wicri:Area/Main/Merge">006667</idno>
<idno type="wicri:Area/Main/Curation">006291</idno>
<idno type="wicri:Area/Main/Exploration">006291</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence</title>
<author>
<name sortKey="Coward, D M" sort="Coward, D M" uniqKey="Coward D" first="D. M." last="Coward">D. M. Coward</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Physics, University of Western Australia, Crawley WA 6009</wicri:regionArea>
<wicri:noRegion>Crawley WA 6009</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Gendre, B" sort="Gendre, B" uniqKey="Gendre B" first="B." last="Gendre">B. Gendre</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>ASI Science Data Center, via Galileo Galilei, 00044 Frascati (RM)</wicri:regionArea>
<wicri:noRegion>00044 Frascati (RM)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sutton, P J" sort="Sutton, P J" uniqKey="Sutton P" first="P. J." last="Sutton">P. J. Sutton</name>
<affiliation>
<wicri:noCountry code="subField">3AA</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Howell, E J" sort="Howell, E J" uniqKey="Howell E" first="E. J." last="Howell">E. J. Howell</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Physics, University of Western Australia, Crawley WA 6009</wicri:regionArea>
<wicri:noRegion>Crawley WA 6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Regimbau, T" sort="Regimbau, T" uniqKey="Regimbau T" first="T." last="Regimbau">T. Regimbau</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Dpt. ARTEMIS, Observatoire de la Côte d’Azur, BP 429 06304 Nice</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Nice</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Laas Ourez, M" sort="Laas Ourez, M" uniqKey="Laas Ourez M" first="M." last="Laas-Bourez">M. Laas-Bourez</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Physics, University of Western Australia, Crawley WA 6009</wicri:regionArea>
<wicri:noRegion>Crawley WA 6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klotz, A" sort="Klotz, A" uniqKey="Klotz A" first="A." last="Klotz">A. Klotz</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre d’étude spatiale des rayonnements, Observatoire Midi‐Pyrénées, CNRS, Université de Toulouse, BP 44346, F–31028 Toulouse Cedex 4</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
<settlement type="city">Toulouse</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Boer, M" sort="Boer, M" uniqKey="Boer M" first="M." last="Boër">M. Boër</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Observatoire de Haute‐Provence, F–04870 Saint Michel l’Observatoire</wicri:regionArea>
<wicri:noRegion>04870 Saint Michel l’Observatoire</wicri:noRegion>
<wicri:noRegion>F–04870 Saint Michel l’Observatoire</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Branchesi, M" sort="Branchesi, M" uniqKey="Branchesi M" first="M." last="Branchesi">M. Branchesi</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>DiSBeF ‐ Università degli Studi di Urbino ‘Carlo Bo’, I‐61029 Urbino</wicri:regionArea>
<wicri:noRegion>I‐61029 Urbino</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Italie</country>
<wicri:regionArea>INFN, Sezione di Firenze, I‐50019 Sesto Fiorentino</wicri:regionArea>
<wicri:noRegion>I‐50019 Sesto Fiorentino</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Monthly Notices of the Royal Astronomical Society: Letters</title>
<title level="j" type="alt">MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LETTERS</title>
<idno type="ISSN">1745-3925</idno>
<idno type="eISSN">1745-3933</idno>
<imprint>
<biblScope unit="vol">415</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="L26">L26</biblScope>
<biblScope unit="page" to="L30">L30</biblScope>
<biblScope unit="page-count">5</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-07-21">2011-07-21</date>
</imprint>
<idno type="ISSN">1745-3925</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1745-3925</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Afterglow</term>
<term>Angle distribution</term>
<term>Binary</term>
<term>Binary neutron star coalescence</term>
<term>Brightest afterglow</term>
<term>Broad distribution</term>
<term>Cadence times</term>
<term>Class telescope</term>
<term>Classical quantum gravity</term>
<term>Coalescence</term>
<term>Coincident</term>
<term>Coincident detections</term>
<term>Data point</term>
<term>Deeper imaging</term>
<term>Detection rate</term>
<term>Detection rates</term>
<term>Detector</term>
<term>Detector network</term>
<term>Early times</term>
<term>Error ellipse</term>
<term>Error ellipses</term>
<term>Galactic extinction</term>
<term>Galaxy</term>
<term>Gravitational wave emissions</term>
<term>Horizon distance</term>
<term>Host galaxies</term>
<term>Host galaxy</term>
<term>Imaging</term>
<term>Joint searches</term>
<term>Kinetic energy</term>
<term>Light curve</term>
<term>Light curves</term>
<term>Luminosity distance</term>
<term>Maximum angle</term>
<term>Maximum time</term>
<term>Monthly notices</term>
<term>Optical afterglows</term>
<term>Optical data</term>
<term>Optical emissions</term>
<term>Optical selection effects</term>
<term>Optimal strategy</term>
<term>Optimistic rate</term>
<term>Robotic telescopes</term>
<term>Sensitivity distance</term>
<term>Several days</term>
<term>Sgrb</term>
<term>Sgrb afterglows</term>
<term>Sgrbs</term>
<term>Short bursts</term>
<term>Source distance</term>
<term>Tarot</term>
<term>Tarot zadko</term>
<term>Telescope</term>
<term>Totani panaitescu</term>
<term>Zadko</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Afterglow</term>
<term>Angle distribution</term>
<term>Binary</term>
<term>Binary neutron star coalescence</term>
<term>Brightest afterglow</term>
<term>Broad distribution</term>
<term>Cadence times</term>
<term>Class telescope</term>
<term>Classical quantum gravity</term>
<term>Coalescence</term>
<term>Coincident</term>
<term>Coincident detections</term>
<term>Data point</term>
<term>Deeper imaging</term>
<term>Detection rate</term>
<term>Detection rates</term>
<term>Detector</term>
<term>Detector network</term>
<term>Early times</term>
<term>Error ellipse</term>
<term>Error ellipses</term>
<term>Galactic extinction</term>
<term>Galaxy</term>
<term>Gravitational wave emissions</term>
<term>Horizon distance</term>
<term>Host galaxies</term>
<term>Host galaxy</term>
<term>Imaging</term>
<term>Joint searches</term>
<term>Kinetic energy</term>
<term>Light curve</term>
<term>Light curves</term>
<term>Luminosity distance</term>
<term>Maximum angle</term>
<term>Maximum time</term>
<term>Monthly notices</term>
<term>Optical afterglows</term>
<term>Optical data</term>
<term>Optical emissions</term>
<term>Optical selection effects</term>
<term>Optimal strategy</term>
<term>Optimistic rate</term>
<term>Robotic telescopes</term>
<term>Sensitivity distance</term>
<term>Several days</term>
<term>Sgrb</term>
<term>Sgrb afterglows</term>
<term>Sgrbs</term>
<term>Short bursts</term>
<term>Source distance</term>
<term>Tarot</term>
<term>Tarot zadko</term>
<term>Telescope</term>
<term>Totani panaitescu</term>
<term>Zadko</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Observations of an optical source coincident with gravitational wave emission detected from a binary neutron star coalescence will improve the confidence of detection, provide host galaxy localization and test models for the progenitors of short gamma‐ray bursts. We employ optical observations of three short gamma‐ray bursts, 050724, 050709 and 051221, to estimate the detection rate of a coordinated optical and gravitational wave search of neutron star mergers. Model R‐band optical afterglow light curves of these bursts that include a jet‐break are extrapolated for these sources at the sensitivity horizon of an Advanced LIGO/Virgo network. Using optical sensitivity limits of three telescopes, namely TAROT (m = 18), Zadko (m = 21) and an 8–10 m class telescope (m = 26), we approximate detection rates and cadence times for imaging. We find a median coincident detection rate of 4 yr−1 for the three bursts. GRB 050724 like bursts, with wide opening jet angles, offer the most optimistic rate of 13 coincident detections per year, and would be detectable by Zadko up to 5 d after the trigger. Late‐time imaging to m = 26 could detect off‐axis afterglows for GRB 051221 like bursts several months after the trigger. For a broad distribution of beaming angles, the optimal strategy for identifying the optical emissions triggered by gravitational wave detectors is rapid response searches with robotic telescopes followed by deeper imaging at later times if an afterglow is not detected within several days of the trigger.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Italie</li>
</country>
<region>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Nice</li>
<li>Toulouse</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Sutton, P J" sort="Sutton, P J" uniqKey="Sutton P" first="P. J." last="Sutton">P. J. Sutton</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Coward, D M" sort="Coward, D M" uniqKey="Coward D" first="D. M." last="Coward">D. M. Coward</name>
</noRegion>
<name sortKey="Coward, D M" sort="Coward, D M" uniqKey="Coward D" first="D. M." last="Coward">D. M. Coward</name>
<name sortKey="Howell, E J" sort="Howell, E J" uniqKey="Howell E" first="E. J." last="Howell">E. J. Howell</name>
<name sortKey="Laas Ourez, M" sort="Laas Ourez, M" uniqKey="Laas Ourez M" first="M." last="Laas-Bourez">M. Laas-Bourez</name>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Gendre, B" sort="Gendre, B" uniqKey="Gendre B" first="B." last="Gendre">B. Gendre</name>
</noRegion>
<name sortKey="Branchesi, M" sort="Branchesi, M" uniqKey="Branchesi M" first="M." last="Branchesi">M. Branchesi</name>
<name sortKey="Branchesi, M" sort="Branchesi, M" uniqKey="Branchesi M" first="M." last="Branchesi">M. Branchesi</name>
</country>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Regimbau, T" sort="Regimbau, T" uniqKey="Regimbau T" first="T." last="Regimbau">T. Regimbau</name>
</region>
<name sortKey="Boer, M" sort="Boer, M" uniqKey="Boer M" first="M." last="Boër">M. Boër</name>
<name sortKey="Klotz, A" sort="Klotz, A" uniqKey="Klotz A" first="A." last="Klotz">A. Klotz</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006291 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 006291 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:8239953A7FB0D83CF71675A18933DD17C7E6E906
   |texte=   Towards an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024